File : fz_gcd.adb


   1 ------------------------------------------------------------------------------
   2 ------------------------------------------------------------------------------
   3 -- This file is part of 'Finite Field Arithmetic', aka 'FFA'.               --
   4 --                                                                          --
   5 -- (C) 2019 Stanislav Datskovskiy ( www.loper-os.org )                      --
   6 -- http://wot.deedbot.org/17215D118B7239507FAFED98B98228A001ABFFC7.html     --
   7 --                                                                          --
   8 -- You do not have, nor can you ever acquire the right to use, copy or      --
   9 -- distribute this software ; Should you use this software for any purpose, --
  10 -- or copy and distribute it to anyone or in any manner, you are breaking   --
  11 -- the laws of whatever soi-disant jurisdiction, and you promise to         --
  12 -- continue doing so for the indefinite future. In any case, please         --
  13 -- always : read and understand any software ; verify any PGP signatures    --
  14 -- that you use - for any purpose.                                          --
  15 --                                                                          --
  16 -- See also http://trilema.com/2015/a-new-software-licensing-paradigm .     --
  17 ------------------------------------------------------------------------------
  18 
  19 with Words;    use Words;
  20 with FZ_Basic; use FZ_Basic;
  21 with FZ_Shift; use FZ_Shift;
  22 with FZ_QShft; use FZ_QShft;
  23 with FZ_Arith; use FZ_Arith;
  24 with FZ_BitOp; use FZ_BitOp;
  25 with FZ_Pred;  use FZ_Pred;
  26 
  27 
  28 package body FZ_GCD is
  29    
  30    -- Find Greatest Common Divisor (GCD) of X and Y.
  31    -- Note that by convention, GCD(0, 0) = 0.
  32    procedure FZ_Greatest_Common_Divisor(X      : in  FZ;
  33                                         Y      : in  FZ;
  34                                         Result : out FZ) is
  35       
  36       -- Widths of X, Y, and Result are equal
  37       subtype Width is Word_Index range X'Range;
  38       
  39       -- Working buffers for GCD computation, initially equal to the inputs
  40       A      : FZ(Width) := X;
  41       B      : FZ(Width) := Y;
  42       
  43       -- Evenness (negation of lowest bit) of A and B respectively
  44       Ae, Be : WBool;
  45       
  46       -- Common power-of-2 factor: incremented when Ae and Be are both 1
  47       Twos   : Word := 0;
  48       
  49       -- This flag is set when A and B are BOTH ODD
  50       OO     : WBool;
  51       
  52       -- |A - B|
  53       D      : FZ(Width);
  54       
  55       -- This flag is set iff A < B
  56       A_lt_B : WBool;
  57       
  58    begin
  59       
  60       -- To converge, requires number of shots equal to (2 * FZ_Bitness) - 1:
  61       for i in 1 .. (2 * FZ_Bitness(X)) - 1 loop
  62          
  63          -- Whether A and B are currently BOTH ODD :
  64          OO := FZ_OddP(A) and FZ_OddP(B);
  65          
  66          -- D := |A - B|
  67          FZ_Sub_Abs(X => A, Y => B, Difference => D, Underflow => A_lt_B);
  68          
  69          -- IFF A,B both ODD, and A < B : B' := A ; otherwise no change :
  70          FZ_Mux(X => B, Y => A, Result => B, Sel => OO and A_lt_B);
  71          
  72          -- IFF A,B both ODD: A' := |A - B| ; otherwise no change :
  73          FZ_Mux(X => A, Y => D, Result => A, Sel => OO);
  74          
  75          -- If A is now EVEN: A := A >> 1; otherwise no change
  76          Ae := 1 - FZ_OddP(A);
  77          FZ_ShiftRight(A, A, WBit_Index(Ae));
  78          
  79          -- If B is now EVEN: B := B >> 1; otherwise no change
  80          Be := 1 - FZ_OddP(B);
  81          FZ_ShiftRight(B, B, WBit_Index(Be));
  82          
  83          -- If both A and B were even, increment the common power-of-two
  84          Twos := Twos + (Ae and Be);
  85          
  86       end loop;
  87       
  88       -- Normally, B will contain the GCD, but in the (N,0) N > 0 case -- A.
  89       -- The other variable will always equal 0. Hence, take Bitwise-OR(A,B):
  90       FZ_Or(X => A, Y => B, Result => A);
  91       
  92       -- Reintroduce the common power-of-2 factor stored in 'Twos'
  93       FZ_Quiet_ShiftLeft(N => A, ShiftedN => A, Count => Indices(Twos));
  94       
  95       -- Output final result -- the GCD.
  96       Result := A;
  97       
  98    end FZ_Greatest_Common_Divisor;
  99    
 100 end FZ_GCD;